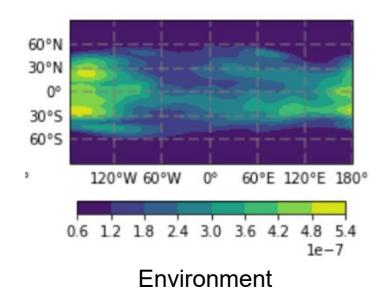
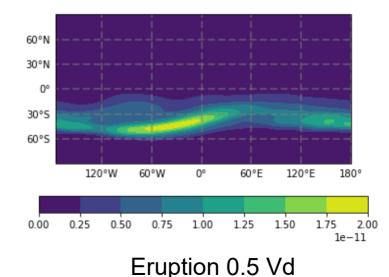
Impact of possible volcanic eruptions on the SO2 composition of the Venus cloud top (> 70km)


Aim & Model


- **Aim** : Space detection of eruptions & SO2 temporal variability at the cloud top
- Model :
 - Explosive eruption on a surface as big as Austria (one GCM cell)
 - SO2 : tracer (no chemistry)
 - Uniform profile of SO2 flux [Eckhardt et al. 2008]
 - Total SO2 flux in the plume 10 kg/s [Gaillard and Scaillet 2014]
- Plume height : up to 70 km (/!\ cloud top) [Glaze et al. 2011]

Results

Venus: 10-100 ppb of SO2 at the cloud top

Simulations : max 0.01 ppb for 0.5 Venus day eruption (59 Earth days) with 70 km height plume

Conclusion

 \rightarrow With theses simulations we can not see an impact of the eruption

 \rightarrow We need at least a flux of 1000 kg SO2/s

Références

Lori S. Glaze, Stephen M. Baloga, and Jesse Wimert. **Explosive volcanic eruptions from linear vents on Earth, Venus, and Mars : Comparisons with circular vent eruptions**. Journal of Geophysical Research : Planets,116(E1), 2011. doi : https://doi.org/10.1029/2010JE003577.

Fabrice Gaillard and Bruno Scaillet. A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth and Planetary Science Letters, 403 :307–316, 2014. ISSN 0012-821X. doi :https://doi.org/10.1016/j.epsl.2014.07.009

S. Eckhardt, A. J. Prata, P. Seibert, K. Stebel, and A. Stohl. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling. Atmospheric Chemistry and Physics, 8(14) :3881–3897, 2008. doi :10.5194/acp-8-3881-2008.